Вычисление пределов функций по правилу лопиталя. Правило Лопиталя для чайников: определение, примеры решения, формулы. Правило Лопиталя: история и определение

Теорема.

Пусть функции f(x) и g(x) определены и дифференцируемы в некоторой окрестности точки x 0 , за исключением может быть самой точки x 0 , и , . Тогда если существует предел отношения производных функций , то существует предел отношения самих функций , причем они равны между собой, т.е. .

Доказательство:

Доопределим f(x) и g(x) в точке x 0 , положив

f(x 0) = g(x 0) = 0.

В окрестности точки x 0 , т.е. на (x 0 ,х) для функций f(x) и g(x) выполняются условия теоремы Коши. Следовательно, существует точка сÎ(x 0 , х) такая, что

Т.к. f(x 0) = g(x 0) = 0.

Перейдем к пределу при x x 0 с x 0 :

Замечание . На практике при раскрытии неопределенности типа можно пользоваться правилом Лопиталя и в случаях, когда x®±¥, x®¥.

Для раскрытия неопределенностей типа существует аналог правила Лопиталя.

Теорема.

Пусть функции f(x) и g(x) непрерывны и дифференцируемы в некоторой окрестности точки x 0 , за исключением самой точки x 0 , причем . Пусть , . Тогда если существует предел отношения производных функций , то существует предел отношения самих функций , причем они равны между собой, т.е. .

В дальнейшем это утверждение будем также называть правилом Лопиталя.

Замечание 1 . Правилом Лопиталя можно пользоваться при раскрытии неопределенностей вида (¥-¥), (0×¥), (1 ¥), (¥ 0), (0 0), сводя их к неопределенностям типа , .

Замечание 2 . Если после применения правила Лопиталя опять получаем неопределенность вида или , то его можно применить повторно.

Пример: Вычислить пределы по правилу Лопиталя.

1. Чтобы применять правило Лопиталя при неопределенности вида или , нужно продифференцировать отдельно числитель и знаменатель дроби, и вычислить полученный предел.

Вывод: показательная функция (y=a n) всегда растет быстрее, чем степенная (у=x n).

Вывод: логарифмическая функция (y=log a x) растет медленнее, чем степенная.

2. Неопределенность вида (0×¥) нужно преобразовать в неопределенность вида или , опустив один из множителей в знаменатель в отрицательной степени, и потом применять правило Лопиталя.

3. При показательной неопределенности: (0 0), (1 ¥), (¥ 0); прежде чем применять правило Лопиталя, нужно прологарифмировать этот предел по основанию e.

= = =(0×¥)= = = =

Формулы Тейлора и Маклорена .

Пусть функция n раз дифференцируема в окрестности точки x 0 .Найдем многочлен степени не выше n-1, такой что

Такой многочлен в некотором смысле «близок» к функции .

Будем искать этот многочлен в форме многочлена, разложенного по степеням , с неопределенными коэффициентами:


Неопределенные коэффициенты определим так, чтобы выполнялись перечисленные выше условия.

Найдем производные от :

Подставляя вместо , находим:

, , , , … , . Отсюда

Þ , , , ,…, .

Искомый многочлен будет иметь вид:

Этот многочлен мы будем называть многочленом Тейлора.

Теорема. Пусть функция n раз дифференцируема в окрестности точки x 0 . Тогда в этой окрестности для функции справедлива следующая формула Тейлора:

Здесь некоторая точка, заключенная между и (), зависящая от , а = - остаточный член в форме Лагранжа.

Доказательство:

Обозначим через многочлен

Ясно, что для каждого выбранного существует такое число , для которого будет выполняться равенство:

Покажем, что это число при уже выбранном будет равно при некотором из промежутка .

Определим функцию

Ясно, что

Следовательно, доказательство мы закончим, если покажем, что в некоторой точке () будет выполняться равенство: .

Непосредственными вычислениями проверяется (см. многочлен Тейлора!), что для всех выполняются равенства:

Число выбрано таким образом, чтобы выполнялось равенство (1) и, следовательно, . Таким образом, для функции на промежутке

Выполняются все условия теоремы Ролля. Следовательно, на интервале () существует такая точка , производная функции , в которой равна нулю, то есть . Но тогда с учетом (2) теорему Ролля можно применить к функции на промежутке и так далее. Применяя, в конце концов, теорему Ролля к функции на соответствующем промежутке, получим точку , для которой будет справедливо равенство .

Утверждение доказано.

Если x 0 =0, то формула Тейлора превращается в формулу Маклорена:

Заметим, что числа n могут выбираться различными, в зависимости и от наличия у функции производных соответствующего порядка, и от необходимой точности расчетов. Например, формула Тейлора для n=4 будет иметь вид:

Разложение некоторых элементарных функций по формуле Маклорена .

Пример:

Разложить функцию по формуле Маклорена, взяв 4 слагаемых.

Воспользуемся формулой Маклорена для функции , заменив x на

Приложения формул Тейлора и Маклорена.

Формулы Тейлора и Маклорена имеют широчайшее применение, как для приближенного вычисления значений целого ряда табулированных функций таких, например, как , , и др., так и для замены сложных функций при решении практических задач многочленами.

В качестве примера приложения формулы Маклорена, определим количество членов в разложении функции по указанной формуле для вычисления ее значения с точностью до 0.001 при любом x из промежутка [-1,1].

Поскольку , то в остаточном члене величина удовлетворяет неравенству: . Следовательно,

Очевидно, что если мы заменим на промежутке [-1,1] функцию соответствующим многочленом Тейлора, то значения этого многочлена на указанном промежутке будут отличаться от соответствующих значений функции на величину меньшую, чем . Выбирая n из условия <0.001, мы получим, что , поскольку ().

Отметим, что формула Тейлора может использоваться и при вычислении пределов.

Признаки монотонности функции.

Пусть функция определена и непрерывна на промежутке (a;b).

Определение: Функция называется неубывающей (невозрастающей)

Определение: Функция называется возрастающей (убывающей) на (a;b), если для любых x 1

Замечание 1: Обратное утверждение не верно. Не всякая функция, производная которой в точке равна нулю или не существует, имеет в этой точке экстремум.

Замечание 2. Функция имеет экстремум только в критических точках.

Правило Лопиталя

Определение 1

Правило Лопиталя: при некоторых условиях предел отношения функций, переменная которых стремится к $a$, равен пределу отношения их производных, при $x$, также стремящемся к $a$ :

$\mathop{\lim }\limits_{x\to a} \frac{f(x)}{g(x)} =\mathop{\lim }\limits_{x\to a} \frac{f"(x)}{g"(x)} $

Правило Лопиталя было открыто шведским математиком Иоганном Бернулли, который затем рассказал в письме о нём Лопиталю. Лопиталь же опубликовал это правило в первом учебнике по дифференциальному исчислению в 1696 году со своим авторством.

Правило Лопиталя применяется для выражений, сводимых к неопределенностям следующего вида:

$\frac{0}{0} \begin{array}{ccc} {} & {} & {\frac{\infty }{\infty } } \end{array}$

Вместо нуля в первом выражении может быть какая-либо бесконечно малая величина.

В общем случае правилом Лопиталя можно воспользоваться, если и в числителе, и в знаменателе одновременно нуль или бесконечность.

Условия, при которых можно применять правило Лопиталя:

  • Соблюдается условие, при котором пределы функций $f(x)$ и $g(x)$ при $x$ стремящемся к $a$ равны между собой и стремятся к нулю или бесконечности: $\mathop{\lim }\limits_{x\to a} f(x)=\mathop{\lim }\limits_{x\to a} g(x)=0$ или $\mathop{\lim }\limits_{x\to a} f(x)=\mathop{\lim }\limits_{x\to a} g(x)=\infty $;
  • Возможно получить производные $f(x)$ и $g(x)$ в окрестности $a$;
  • Производная функции $g(x)$ не нулевая $g"(x)\ne 0$ в окрестности $a$;
  • Предел отношения производных функций $f(x)$ и $g(x)$, в записи выглядящий как $\mathop{\lim }\limits_{x\to a} \frac{f"(x)}{g"(x)} $ существует.

Доказательство правила Лопиталя:

  1. Пусть даны функции $f(x)$ и $g(x)$, причём наблюдается равенство пределов:
  2. $\mathop{\lim }\limits_{x\to a+0} f(x)=\mathop{\lim }\limits_{x\to a+0} g(x)=0 $.
  3. Доопределим функции в точке $a$. Для этой точки будет справедливым условие:
  4. $\frac{f(x)}{g(x)} =\frac{f(x)-f(a)}{g(x)-g(a)} =\frac{f"(c)}{g"(c)}$.
  5. Величина $c$ зависит от $x$, но если $x\to a+0$, то $c\to a$.
  6. $\mathop{\lim }\limits_{x\to a+0} \frac{f(x)}{g(x)} =\mathop{\lim }\limits_{c\to a+0} \frac{f"(c)}{g"(c)} =\mathop{\lim }\limits_{x\to a+0} \frac{f"(c)}{g"(c)} $.

Алгоритм вычисления решения с использованием правила Лопиталя

  1. Проверка всего выражения на неопределенность.
  2. Проверка всех условий, изложенных выше перед дальнейшим использованием правила Лопиталя.
  3. Проверка стремления производной функции к $0$.
  4. Повторная проверка на неопределенность.

Пример № 1:

Найти предел:

$\mathop{\lim }\limits_{x\to 0} \frac{x^{2} +5x}{3x} $

Решение:

  • Предел функции $f(x)$ равен пределу $g(x)$ и оба они равны нулю: $\mathop{\lim }\limits_{x\to a} f(x)=\mathop{\lim }\limits_{x\to 0} (x^{2} +5x)=0$; $\mathop{\lim }\limits_{x\to a} g(x)=\mathop{\lim }\limits_{x\to 0} (3x)=0$
  • $g"(x)=3\ne 0$ в окрестности $a$
  • $\mathop{\lim }\limits_{x\to a} \frac{f"(x)}{g"(x)} =\mathop{\lim }\limits_{x\to 0} \frac{2x+5}{3} $

$\mathop{\lim }\limits_{x\to 0} \frac{x^{2} +5x}{3x} =\left\langle \frac{0}{0} \right\rangle =\mathop{\lim }\limits_{x\to 0} \frac{\left(x^{2} +5x\right)"}{\left(3x\right)"} =\mathop{\lim }\limits_{x\to 0} \frac{2x+5}{3} =\frac{0+5}{3} =\frac{5}{3} $

Пример № 2:

Найти предел:

$\mathop{\lim }\limits_{x\to \infty } \frac{x^{3} -3x^{2} +2x}{x^{3} -x} $

Решение:

Проверим условия применимости правила Лопиталя:

  • $\mathop{\lim }\limits_{x\to a} f(x)=\mathop{\lim }\limits_{x\to \infty } (x^{3} -3x^{2} +2x)=\infty $; $\mathop{\lim }\limits_{x\to a} g(x)=\mathop{\lim }\limits_{x\to \infty } (x^{3} -x)=\infty $
  • $f(x)$ и $g(x)$ дифференцируемы в окрестности $a$
  • $g"(x)=6\ne 0$ в окрестности $a$
  • $\mathop{\lim }\limits_{x\to a} \frac{f"(x)}{g"(x)} =\mathop{\lim }\limits_{x\to \infty } \frac{3x^{2} -6x+2}{3x^{2} -1} $

Запишем производную и найдем предел функции:

$\mathop{\lim }\limits_{x\to \infty } \frac{x^{3} -3x^{2} +2x}{x^{3} -x} =\left\langle \frac{\infty }{\infty } \right\rangle =\mathop{\lim }\limits_{x\to \infty } \frac{\left(x^{3} -3x^{2} +2x\right)"}{\left(x^{3} -x\right)"} =\mathop{\lim }\limits_{x\to \infty } \frac{3x^{2} -6x+2}{3x^{2} -1} =\left\langle \frac{\infty }{\infty } \right\rangle $

Повторяем вычисление производной пока не избавимся от неопределенности:

$\mathop{\lim }\limits_{x\to \infty } \frac{\left(3x^{2} -6x+2\right)"}{\left(3x^{2} -1\right)"} =\mathop{\lim }\limits_{x\to \infty } \frac{6x-6}{6x} =\left\langle \frac{\infty }{\infty } \right\rangle =\mathop{\lim }\limits_{x\to \infty } \frac{\left(6x-6\right)"}{\left(6x\right)"} =\frac{6}{6} =1$

Пример № 3:

Найти предел:

$\mathop{\lim }\limits_{x\to 0} \frac{\sin 5x}{x} $

Решение:

$\mathop{\lim }\limits_{x\to 0} \frac{\sin 5x}{x} =\left\langle \frac{0}{0} \right\rangle =\mathop{\lim }\limits_{x\to 0} \frac{\left(\sin 5x\right)"}{\left(x\right)"} =\mathop{\lim }\limits_{x\to 0} \frac{5\cos 5x}{1} =5\mathop{\lim }\limits_{x\to 0} \cos 5x=5$

Пример № 4:

Найти предел:

$\mathop{\lim }\limits_{x\to \infty } (1+x^{2})^{1/x} $

Решение:

Прологарифмируем функцию:

$\ln y=\frac{1}{x} \ln (1+x^{2})=\frac{\ln (1+x^{2})}{x} $

$\mathop{\lim }\limits_{x\to \infty } \frac{\ln (1+x^{2})}{x} =\mathop{\lim }\limits_{x\to \infty } \frac{\left[\ln (1+x^{2})\right]"}{x"} =\mathop{\lim }\limits_{x\to \infty } \frac{\frac{2x}{1+x^{2} } }{1} =0$

Поскольку функция $ln(y)$ - непрерывная, получим:

$\mathop{\lim }\limits_{x\to \infty } (\ln y)=\ln (\mathop{\lim }\limits_{x\to \infty } y)$

Следовательно,

$\ln (\mathop{\lim }\limits_{x\to \infty } y)=0$

$\mathop{\lim }\limits_{x\to \infty } y=1$

$\mathop{\lim }\limits_{x\to \infty } (1+x^{2})^{1/x} =1$

Изложен метод решения пределов, используя правило Лопиталя. Приводятся формулировки соответствующих теорем. Подробно разобраны примеры решения пределов, содержащих неопределенности ∞/∞, 0/0, 0 в степени 0 и ∞ - ∞, с помощью правила Лопиталя.

Содержание

См. также: Правила вычисления производных

Метод решения

Одним из самых мощных методов раскрытия неопределенностей и вычисления пределов функций является использование правила Лопиталя. Оно позволяет раскрывать неопределенности вида 0/0 или ∞/∞ в конечной или бесконечно удаленной точке, которую мы обозначим как x 0 . Правило Лопиталя заключается в том, что мы находим производные числителя и знаменателя дроби. Если существует предел , .
Если после дифференцирования мы опять получаем неопределенность, то процесс можно повторить, то есть применить правило Лопиталя уже к пределу . И так далее, до раскрытия неопределенности.

Для применения этого правила, должна существовать такая проколотая окрестность точки x 0 , на которой функции в числителе и знаменателе являются дифференцируемыми и функция в знаменателе и ее производная не обращается в нуль.

Применение правила Лопиталя состоит из следующих шагов.
1) Приводим неопределенность к виду 0/0 или ∞/∞ . Для этого, если требуется, выполняем преобразования и делаем замену переменной . В результате получаем предел вида .
2) Убеждаемся, что существует такая проколотая окрестность точки x 0 , на которой функции в числителе и знаменателе являются дифференцируемыми и знаменатель и его производная не обращаются в нуль.
3) Находим производные числителя и знаменателя.
4) Если имеется конечный или бесконечный предел , то задача решена: .
5) Если предела не существует, то это не означает, что не существует исходного предела. Это означает, что данную задачу решить с помощью правила Лопиталя нельзя. Нужно применить другой метод (см. пример ниже).
6) Если в пределе вновь возникает неопределенность, то к нему также можно применить правило Лопиталя, начиная с пункта 2).

Как указывалось выше, применение правила Лопиталя может привести к функции, предела которой не существует. Однако это не означает, что не существует исходного предела. Рассмотрим следующий пример.
.
Применяем правило Лопиталя. , .
Однако предела не существует. Не смотря на это, исходная функция имеет предел:
.

Правило Лопиталя. Формулировки теорем

Здесь мы приводим формулировки теорем, на которых основывается раскрытие неопределенностей по правилу Лопиталя.

Теорема о раскрытии неопределенности 0/0
Пусть функции f и g имеют производные в проколотой (двусторонней или односторонней) окрестности конечной или бесконечно удаленной () точки , причем и не равны нулю в этой окрестности. И пусть
.
,
то существует равный ему предел
.

Теорема о раскрытии неопределенности ∞/∞
Пусть функции f и g имеют производные в проколотой (двусторонней или односторонней) окрестности конечной или бесконечно удаленной () точки , причем не равна нулю в этой окрестности. И пусть
.
Тогда, если существует конечный или бесконечный предел
,
то существует равный ему предел
.
Здесь для двусторонней окрестности. Для односторонней окрестности, , или .

Примеры

Пример 1

Показать, что экспонента растет быстрее любой степенной функции, а логарифм - медленнее. То есть показать, что
А) ;
Б) ,
где .

Рассмотрим предел А). При . Это неопределенность вида . Для ее раскрытия применим правило Лопиталя. Пусть
.
Находим производные. . Тогда
.
Если , то неопределенность исчезает, поскольку при . По правилу Лопиталя,
.

Если , то применяем правило Лопиталя n раз, где - целая часть числа b .
;

.
Поскольку , то . Хотя мы привыкли читать слева направо, но эту серию равенств следует читать справа налево следующим образом. Поскольку существует предел , то существует равный ему предел . Поскольку существует предел , то существует равный ему предел . И так далее, пока не дойдем до предела .

Теперь рассмотрим предел Б):
. Сделаем замену переменной . Тогда ; при ; .

Пример 2

Найти предел с помощью правила Лопиталя:
.

Это неопределенность вида 0/0 . Находим по правилу Лопиталя.

.

Здесь, после первого применения правила мы снова получили неопределенность. Поэтому применили правило Лопиталя второй раз. Эту серию равенств нужно читать справа налево следующим образом. Поскольку существует предел , то существует равный ему предел . Поскольку существует предел , то существует равный ему исходный предел .

Пример 3

Вычислить предел, используя правило Лопиталя.
.

Найдем значения числителя и знаменателя при :
;

.
Числитель и знаменатель равны нулю. Мы имеем неопределенность вида 0/0 . Для ее раскрытия, применим правило Лопиталя.


.

Пример 4

Решить предел с помощью правила Лопиталя.
.

Здесь мы имеем неопределенность вида (+0) +0 . Преобразуем ее к виду +∞/+∞ . Для этого выполняем преобразования.
.

Находим предел в показателе степени, применяя правило Лопиталя.
.

Поскольку экспонента - непрерывная функция для всех значений аргумента, то
.

Пример 5

Найти предел используя правило Лопиталя:
.

Здесь мы имеем неопределенность вида ∞ - ∞ . Приводя дроби к общему знаменателю, приведем ее к неопределенности вида 0/0 :
.

Применяем правило Лопиталя.
;
;
.

Здесь у нас снова неопределенность вида 0/0 . Применяем правило Лопиталя еще раз.
;

;
.

Окончательно имеем:

.
Как и во всех пределах, вычисляемых с помощью правила Лопиталя, читать нужно с конца. Поскольку существует предел , то существует равный ему предел . Поскольку существует предел , то существует равный ему исходный предел .

Примечание. Можно упростить вычисления, если воспользоваться теоремой о замене функций эквивалентными в пределе частного . Согласно этой теореме, если функция является дробью или произведением множителей, то множители можно заменить на эквивалентные функции. Поскольку при , то

.

Использованная литература:
Л.Д. Кудрявцев, А.Д. Кутасов, В.И. Чехлов, М.И. Шабунин. Сборник задач по математическому анализу. Том 1. Москва, 2003.

См. также:

Правило Лопиталя

Правило Лопиталя представляет собой метод вычисления пределов, имеющих неопределенность типа или . Пусть a является некоторым конечным действительным числом или равно бесконечности.

Правило Лопиталя можно также применять к неопределенностям типа . Первые две неопределенности можно свести к типу или с помощью алгебраических преобразований. А неопределенности сводятся к типу с помощью соотношения

Правило Лопиталя справедливо также и для односторонних пределов.

Пример 1

Вычислить предел .

Решение.

Дифференцируя числитель и знаменатель, находим значение предела:

Пример 2

Вычислить предел .

Решение.

Поскольку прямая подстановка приводит к неопределенности типа , применяем правило Лопиталя.

Пример 3

Вычислить предел .

Решение.

Здесь мы имеем дело с неопределенностью типа . После простых преобразований, получаем

Пример 4

Найти предел .

Решение.

Используя правило Лопиталя, можно записать

Пример 5

Найти предел .

Решение.

Здесь мы встречаемся с неопределенностью типа . Обозначим . После логарифмирования получаем

Соответственно,

Пример 6

15. Правила Лопиталя*

Швейцарский математик Иоганн I Бернулли (1667-1748) после успешного окончания Базельского университета, путешествуя по Европе, в 1690 году приезжает в Париж. В литературном салоне философа Никола Мальбранша (1638-1715) Иоганн знакомится с французским математиком маркизом Гийомом Франсуа Антуаном де Лопиталем (1661-1704). В ходе оживленной беседы Лопиталь удивился, как легко, “как бы играя”, юнец Бернулли решал трудные задачи по новому исчислению. Поэтому Лопиталь попросил прочитать ему несколько лекций. Устные беседы понравились Лопиталю, и он за приличный гонорар стал получать материалы в письменном виде. Заметим, что общеизвестное теперь “правило Лопиталя” для раскрытия неопределенностей также было передано ему Иоганном. Уже в 1696 году появился знаменитый трактат Лопиталя “Введение в анализ бесконечно малых для понимания кривых линий”. Вторая часть курса, изложенного Иоганном I Бернулли, была опубликована лишь в 1742 году и называлась “Математические лекции о методе интегралов и другие; написаны для знаменитого маркиза Госпиталия; годы 1691-1692”. В 1921 году были обнаружены рукописные копии лекций, написанные рукой Иоганна I Бернулли, оригиналы которых были переданы Лопиталю в 1691-1692 гг. Из них ученые неожиданно обнаружили, что Лопталь в своем “Анализе” почти не отступал от лекций своего молодого учителя.

Теорема (Коши). Пусть функции и непрерывны на , дифференцируемы на и . Тогда :

Доказательство. Рассмотрим функцию

Выберем так, чтобы выполнялись все условия теоремы Ролля, т.е. .

По теореме Ролля существует :

Первое правило Лопиталя

Определение. Пусть функции , непрерывны на , дифференцируемы в , причем . Пусть . Тогда говорят, что отношение при представляет собой неопределенность вида .

Теорема.

Применим теорему Коши к отрезку , где . Существует :

и, значит,

Это и означает, что .

В случае, когда бесконечно, неравенство (1) заменяется на

в зависимости от знака . В остальном доказательство не меняется.

Второе правило Лопиталя

Определение. Пусть функции , непрерывны и дифференцируемы в , причем . Пусть . Тогда говорят, что отношение при представляет собой неопределенность вида .

Теорема. Если при указанных условиях существует

Доказательство. Пусть конечно. По выберем : в интервале выполняется неравенство

Определим функцию из условия

при . Применим к отрезку теорему Коши. Получим, что существует :

Для тех , для которых

Так как произвольно мало, то

В случае, когда , неравенство (2) заменяется на

а неравенство (4) – на неравенство

имеющим место при , достаточно близких к a в силу (3).

Аналогично рассматривается случай .

Применение правила Лопиталя необходимо для вычисления пределовпри получении неопределенностей вида 0 0 и ∞ ∞ .

Имеются неопределенности вида 0 · ∞ и ∞ - ∞ .

Самой важной частью правила Лопиталяявляется дифференцирование функции и нахождение ее производной.

Правило Лопиталя

Определение 1

Когда lim x → x 0 f (x) g (x) = 0 0 или ∞ ∞ и функции f (x) , g (x) являются дифференцируемыми в пределах точки х 0 , тогда lim x → x 0 f (x) g (x) = lim x → x 0 f " (x) g " (x) .

Если неопределенность нерешаема после применения правила Лопиталя, тогда необходимо снова его применить. Для полного понятия рассмотрим несколько примеров.

Пример 1

Произвести вычисления, применив правило Лопиталя lim x → 0 sin 2 (3 x) x · cos (x) .

Решение

Для решения по правилу Лопиталя для начала необходимо произвести подстановку. Получаем, что lim x → 0 sin 2 (3 x) x · cos (x) = sin 2 (3 · 0) 0 · cos (0) = 0 0 .

Теперь можно переходить к вычислению пределов, используя правило. Получаем, что

lim x → 0 sin 2 (3 x) x · cos (x) = 0 0 = lim x → 0 sin 2 (3 x) " x · cos (x) " = lim x → 0 2 sin (3 x) (sin (3 x)) " x " · cos (x) + x · (cos (x)) " = = lim x → 0 6 sin (3 x) cos (3 x) cos (x) - x · sin (x) = 6 sin (3 · 0) cos (3 · 0) cos (0) - 0 · sin (0) = 0 1 = 0

Ответ: lim x → 0 sin 2 (3 x) x · cos (x) = 0 .

Пример 2

Вычислить предел заданной функции lim x → ∞ ln (x) x .

Решение

Производим постановку бесконечностью. Получаем, что

lim x → ∞ ln (x) x = ln (∞) ∞ = ∞ ∞

Полученная неопределенность указывает на то, что необходимо применить правило Лопиталя. Имеем, что

lim x → ∞ ln (x) x = ∞ ∞ = lim x → ∞ ln (x) " x " = lim x → ∞ 1 x 1 = 1 ∞ = 0

Ответ: lim x → ∞ ln (x) x = 0

Пример 3

Вычислить предел заданной функции lim x → 0 + 0 (x 4 ln (x))

Решение

Производим подстановку значения x . получаем, что

lim x → 0 + 0 (x 4 ln (x)) = (0 + 0) 4 · ln (0 + 0) = 0 · (- ∞)

Решение привело к неопределенности вида ноль умноженный на отрицательную бесконечность. Это указывает на то, что необходимо обратиться к таблице неопределенностей и принять решения для выбора метода нахождения этого предела. После преобразования применяем правило Лопиталя. Получаем, что

lim x → 0 + 0 (x 4 ln (x)) = 0 · (- ∞) = lim x → 0 + 0 ln (x) x - 4 = ln (0 + 0) (0 + 0) - 4 = - ∞ + ∞

Приход к неопределенности говорит о том, что необходимо повторное применение этого правила. Имеем, что

lim x → 0 + 0 (x 4 ln (x)) = 0 · (- ∞) = lim x → 0 + 0 ln (x) x - 4 = - ∞ + ∞ = = lim x → 0 + 0 (ln (x)) " (x - 4) " = lim x → 0 + 0 1 x - 4 - 5 = - 1 4 lim x → 0 + 0 1 x - 4 = - 1 4 · 1 (0 + 0) - 4 = = - 1 4 · (0 + 0) 4 = 0

Ответ: lim x → 0 + 0 (x 4 ln (x)) = 0

Пример 4

Выполнить вычисление предела функции lim x → 0 c t g 2 (x) - 1 x 2 .

Решение

После подстановки получаем

lim x → 0 c t g 2 (x) - 1 x 2 = ∞ - ∞

Наличие неопределенности указывает на то, что следует использовать правило Лопиталя. Получаем, что

lim x → 0 c t g 2 (x) - 1 x 2 = ∞ - ∞ = lim x → 0 cos 2 (x) sin 2 (x) - 1 x 2 = = lim x → 0 x 2 cos 2 (x) - sin 2 (x) x 2 sin 2 (x) = lim x → 0 x cos x - sin x x cos x + sin x x 2 sin 2 (x) = = lim x → 0 x cos x - sin x x sin 2 (x) x cos x + sin x x = lim x → 0 x cos x - sin x x sin 2 (x) cos x + sin x x = = lim x → 0 cos x + sin x x lim x → 0 x cos x - sin x x sin 2 (x) = 2 lim x → 0 x cos x - sin x x sin 2 (x) = = 2 0 · cos (0) - sin (0) 0 · sin 2 (0) = 0 0

Для последнего перехода использовался первый замечательный предел. После чего приходим к решению по Лопиталю. Получим, что

2 lim x → 0 x cos x - sin x x sin 2 (x) = 0 0 = 2 lim x → 0 (x cos x - sin x) " (x sin 2 (x)) " = = 2 lim x → 0 cos x - x sin x - cos x sin 2 (x) + 2 x sin x cos x = 2 lim x → 0 - x sin (x) + 2 x cos x = 0 0

Так как неопределенность не ушла, необходимо еще одно применение правила Лопиталя. Получаем предел вида

2 lim x → 0 - x sin (x) + 2 x cos x = 0 0 = 2 lim x → 0 - x " sin (x) + 2 x cos x " = = 2 lim x → 0 1 cos x + 2 cos x - 2 x sin x = - 2 · 1 3 · cos (0) - 2 · 0 · sin (0) = - 2 3

Ответ: lim x → 0 c t g 2 (x) - 1 x 2 = - 2 3

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Понравилось? Лайкни нас на Facebook