Энергоустановка. Маркелов В.Ф. Способ получения энергии Энергия от маркелова в ф

Представленный способ получения энергии представляется нам наиболее перспективным, исходя из следующих соображений:
относительно небольшая стоимость изготовления, возможность использования распространенных подручных материалов для строительства резервуара, возможность использования любого воздушного компрессора, который удастся достать, сравнительно небольшие габариты устройства, что делает возможныи его установку в личном хозяйстве.
Проживание автора в пределах досягаемости делает возможным обращение к нему за консультациями относительно конкретных размеров и формы элементов устройства.
Вместе с тем обсчет мощностей автором делает не слишком принципиальным вопрос о превышении полученной мощности над затраченной в десятки раз, если -уж эффект есть, то он проявится при любом соотношении подаваемой и снимаемой мощностей.
Тем более что для домашних экспериментов не требуется мощная материальная база.
Любой домашний умелец в состоянии изготовить образец, используя любые подходящие емкости, и придерживаясь примерного соотношения габаритов, данных автором.

Администрация сайта будет благодарна за информацию о экспериментах по проверке и строительству рабочих образцов.

СПОСОБ ПОЛУЧЕНИЯ ЭНЕРГИИ
(патент РФ N 2059110)

МАРКЕЛОВ В.Ф.,

В 1607 году датский ученый Корне-лиус ван Дреббель продемонстрировал английскому королю Иакову I «вечные» часы, приводимые в движение, естественно, столь же «вечным» двигателем. Дреббель запатентовал их еще в 1598 году. Однако в отличие от других многочисленных устройств с таким же названием этот двигатель действительно в определенном смысле был «вечным».

В чем же был секрет этих часов (вернее, их двигателя)? Вечные часы Дреббеля работали от привода, использующего, как и любой другой реальный двигатель, единственно возможный источник работы - неравновесность (разность потенциалов) во внешней среде.

Но неравновесность, использованная Дреббелем - особого рода, хотя она также связана с разностью температур и давлений. Она может действовать в совершенно равновесной окружающей среде, температура и давление которой одинаковы во всех точках. В чем же тут дело и откуда берется работа?

Секрет состоит в том, что разности потенциалов здесь все же присутствуют, однако они проявляются не в пространстве, а во времени.

Наиболее наглядно это можно пояснить на примере атмосферы. Пусть в том районе, где находится двигатель, не наблюдается никакой существенной разницы давлений и температур. Но (общие во всех точках) давление и температура все же меняются (например, днем и ночью). Эти разности и могут быть использованы для получения работы (в полном согласии с законами термодинамики).

В описании изобретения «Способ извлечения запаса содержащейся в жидкости и газе энергии и преобразования ее в механическую работу» (Патент РФ № 2059110) приведен мой вариант псевдо-вечного и успешно работающего солнечного двигателя. Для увеличения числа циклов и мощности наиболее полно используются свойства двух неравновесных по отношению друг к другу сред - воды и воздуха. Закон Архимеда рассматривается как следствие закона сохранения энергии, в котором выталкивающая сила увязывается с затратами энергии на создание воды и воздуха. Количество этой энергии определило и такие физические свойства как, например, плотность, теплоемкость, теплопроводность.

Частично соотношение энергии на создание плотностей отражено в коэффициенте неравновесности равном 820 и, если бы мы нашли способ использовать эту неравновесность полностью, то получили бы выигрыш в энергии в 820 раз. Неравновесности проявляются с момента подвода воздуха под столб воды и увеличиваются по мере всплытия за счет увеличения объема воздуха и отбора теплоты у воды, при этом воздух подается с температурой ниже температуры воды, т.к. «если, например, давление воздуха равно 4 Атм (0,4 МПа), а температура +20oС (293 K), то при расширении до атмосферного давления он охладится примерно до - 75oС (198 K), т.е. на 95oС». Отбор теплоты будет происходить в условиях, близких к адиабатным, т.е. с минимальными потерями теплоты, т.к. вода является хорошим аккумулятором теплоты, но плохим ее проводником.

Охлаждение - водяное.

РАСЧЕТ ЭНЕРГОИЗВЛЕКАЮЩЕЙ ПНЕВМОГИДРАВЛИЧЕСКОЙ ТУРБИНЫ (патенты РФ N 2120058, N 2170364, N 2024780)

В качестве источника сжатого воздуха используем компрессор. Наиболее пригодными являются компрессоры объемного и динамического типа. Поршневой компрессор потребляет энергии в несколько раз меньше динамического, поэтому остановим наш выбор на компрессоре объемного типа - поршневом:

Источник сжатого воздуха - компрессор поршневой ВП2-10/9.

Судить об эффективности пневмогидравлической турбины будем, сравнивая затрачиваемую и полученную мощности, т.е. количество работы в секунду.

Производительность компрессора - объем воздуха, поступившего в компрессор при атмосферном давлении, т.е. производительность в 0,167 м3/с - объем воздуха перед входом в компрессор и после всплытия в турбине. При подаче воздуха под нижний уровень турбины через верхний уровень будет вытеснено 0,167 м3/с воды и столько же поступит под нижний уровень, создавая водо-воз-душную смесь и ее движение внутри корпуса турбины. Значение 0,167 м3/с соответствует расходу воды при расчете мощности пневмогидрав-лической турбины. Расчет проведем по формуле расчета мощности гидротурбины:

N=9,81·Q·H·КПД,

где 9,81 м/с2 - ускорение свободного падения;

Q - расход воды в м3/с;

H - напор в м;

КПД реальной турбины достигает достаточно высоких значений и при наиболее благоприятном режиме достигает 0,94–0,95, или 94–95%. Мощность получаем в КВт. Поскольку рабочим телом является водо-воздушная смесь, есть необходимость подтверждения правомерности применения формулы расчета мощности для гидравлической турбины. Наиболее эффективным режимом работы турбины представляется режим, при котором используется смесь плотностью 0,5 т/м3 (состоящая из 50% воды и 50% воздуха). В этом режиме давление воздуха несколько выше абсолютного давления в корпусе турбины. Воздух из напорного патрубка компрессора выходит отдельными пузырями через равные промежутки времени, а объем пузырей равен объему воды между ними в корпусе турбины. Пузырь принимает форму шарового сегмента и в фиксированном пространстве работает как поршень, вытесняя воду только вверх, т.к. ее перетоку вниз препятствует более высокое давление, а перетоку в стороны - несжимаемость воды. При постоянной подаче 0,167 м3/с воздуха будет вытеснено 0,167 м3/с воды, т.е. через верхний уровень турбины будет вытеснено 2·0,167 м3/с водо-воздушной смеси с повышенной скоростью потока внутри турбины, тогда

N = 9,81·2·Q·0,5·H·КПД = 9,81·Q·H·КПД

Возьмем установку с высотой водяного столба равного 2 м и определим необходимую мощность двигателя компрессора на подвод под этот столб воды воздуха с учетом атмосферного давления исходя из данных технической характеристики компрессора:

На всей высоте установки будет наблюдаться восходящий поток водо-воздушной смеси, в котором независимая от глубины погружения тела выталкивающая сила позволяет разместить не менее 5 рабочих колес. Энергетический режим предлагаемой турбины протекает в более выгодных условиях, чем в известном насосе «Эрлифт», т.к. переток воды происходит ниже уровня воды в турбине, т.е. в условиях, близких к условиям невесомости, без значительного подъема воды в корпусе турбины, на что в насосе расходуется основное количество энергии. Возьмем КПД турбины равным 0,9. В этом случае мощность равна:

N = 9,81·0,167 ·2 ·5 ·0,9 = 14, 7 КВт

Таким образом, нами была получена энергия, в 13 раз превышающая затраченную:

14,7 КВт / 1,13 КВт = 13

Увеличение мощности за счет размещения дополнительных рабочих колес подтверждено на экспериментальных моделях. Косвенно работоспособность турбины подтверждена опытами, проведенными в Санкт-Петербургском Государственном Техническом Университете. Вот что пишет доктор технических наук, профессор, член комиссии по не-

Фото 3, Фото 4

традиционным источникам энергии при Правительстве РФ, заведующий кафедрой «Возобновляемые источники энергии и гидроэнергетика» Елистра-тов В.В.: «Однако исходя из гидравлики гидромашин и наших многочисленных опытов по впуску воздуха в рабочее колесо гидротурбины с целью снижения кавитационной эррозии, было показано, что при улучшении кавитационных показателей энергетические показатели значительно снижались». В этом случае опыты показывают, что подводимый воздух создает встречный поток, который, действуя на рабочее колесо снизу, заставляет его вращаться в обратную сторону. Такова конструкция колеса (Рис. 1). И это действие оказывает небольшой объем воздуха на небольшом участке, равном корпусу гидротурбины. Предлагаемая установка обладает способностью отбирать теплоту из воды и преобразовывать ее в механическую энергию. С учетом разности температур воды и воздуха, когда температура воды равна 80oС (термальный источник, вода, нагретая в солнечном коллекторе, в системе охлаждения турбин, компрессоров и т.д.), а температура воздуха 20oС, коэффициент увеличения объема воздуха, согласно закону Люссака, равен

1+ (80oС – 20oС)/273 = 1,2

Мощность будет равна

N = 14,7 КВт· 1,2 = 17,6 КВт

Наши ожидания в выигрыше энергии подтвердились.

17,6 КВт / 5 = 3,5 КВт 3,5 КВт / 1,13 КВт = в 3,1 раза на одно колесо

При расчете мощности, необходимой для подвода воздуха, мы учли атмосферное давление (1 Атмосфера = 10 м водного столба), что значит, что всплывающий воздух преодолевает абсолютное давление внутри корпуса турбины, которое складывается из давления столба воды в турбине и атмосферного и равно давлению 12-метрового столба воды. Абсолютное давление внутри корпуса турбины нейтрализовано силой плавучести воздуха, но оно присутствует за корпусом и влияет на подвод воды в турбину. Это влияние равноценно влиянию на водный поток разрежения, создаваемого в корпусе турбины всем находящимся в турбине объемом воздуха (в гидротурбине данный эффект отсутствует) и при соответствующей конструкции турбины мы вправе рассматривать напор как Н=Н в.ст. + 10 м. Тогда мощность будет равна

N = 9,81·0,167 м3/с ·12 м·5·1,2·0,9 = 106,14 КВт

Мы получили энергию в 93 раза превышающую затраченную.

Произведем расчет более мощной энергоустановки, способной обеспечить энергией средний поселок, воинскую часть, судно и т.д. В качестве источника сжатого воздуха возьмем поршневой компрессор 2ВМ10 - 63/9 со следующими техническими характеристиками:

Производительность - 1,04 м3/с

Конечное давление, Мпа - 0,9 (9 Атмосфер)

Мощность на валу компрессора - 332 КВт

Охлаждение водяное.

Расчет проведем для установки с высотой водяного столба равным 5 м с размещением в нем по глубине через 500 мм 10 рабочих колес. Мощность двигателя компрессора на подвод воздуха под столб воды 5 м с учетом атмосферного давления равна

5 м (332 КВт / 100 м) =16,6 КВт

Мощность установки равна

N= 9,81 · 1,04 м3/с ·15 м ·10 ·1,2 · 0,9 = 1652 КВт

Получили энергию в 99 раз превышающую затраченную.

Таким образом, возможно получение любого количества энергии с одновременным улучшением газового состава воды экологически чистым способом из неисчерпаемого источника энергии, используя природную неравновесность воды и воздуха в любой климатической зоне без строительства дорогостоящей плотины и шлюзового оборудования, без затопления ценных сельскохозяйственных земель и т.д.

РАСЧЕТ ЭНЕРГОИЗВЛЕКАЮЩЕГО ПНЕВМОГИДРОДВИГАТЕЛЯ
(патенты РФ N 2003830, N 2160381)

Источник сжатого воздуха - поршневой компрессор ВП2 - 10/9.

Производительность - 0,167 м3/с

Конечное давление, Мпа - 0,9 (9 Атмосфер).

Мощность на валу компрессора - 56,5 КВт

Охлаждение водяное.

Судить об эффективности пневмогидродвигате-ля будем, сравнивая затраченную и полученную мощности, т.е. количество работы, производи-

мой в секунду. Производительность компрессора - количество воздуха на входе в компрессор, т.е. объем воздуха при атмосферном давлении. Тогда 0,167 м3/с - объем воздуха на входе в компрессор и на выходе из верхнего поплавка пнев-могидродвигателя, изображенного на Рис. 3. Освобождение поплавков от воздуха и их заполнение водой происходит ниже уровня воды в корпусе двигателя. При давлении воздуха в 9 Атм он может быть подан под столб воды высотой 90 м. При скорости всплытия 0,4 м/с время всплытия составит 225 сек, при этом на всей высоте столба в поплавках будет присутствовать воздух, находящийся в движении. Скорость всплытия равная 0,4 м/с определена в результате замеров.

Ее увеличение или уменьшение при сохранении столба воды и производительности компрессора отражается только на размерах поплавков по горизонтали, т.е. на длине и ширине, т.к. увеличивается или уменьшается количество воздуха, что, в свою очередь, увеличивает или уменьшает силу и не отражается на мощности пневмогидродвигателя. Изменение размеров поплавков только по горизонтали позволяет делать поплавки необходимого объема при сохранении столба воды.

Объем воздуха на выходе из напорного патрубка компрессора на глубине 90 м с учетом атмосферного давления будет равен

0,167 (м3/с) / 10 Атм = 0,0167 м3/с

т.к. давление 10 м водяного столба равно 1 Атм, а увеличение объема воздуха на величину первоначального объема происходит через каждые 10 м всплытия. Если бы объем воздуха не изменялся, то на момент всплытия он бы занял объем равный

0,0167 (м3/с) ·225 с = 3,757 м3

С учетом увеличения объема воздуха при всплытии объем будет равен

3,757 м3 ·10 Атм = 37,57 м3

С учетом коэффициента теплового расширения объем равен

37,57 м3 ·1,2 = 45, 084 м3

Сила плавучести 1 м3 воздуха равна 1000 кг с

Этот объем воздуха при всплытии произведет

работу равную

45,084 тС ·0,4 м/с =18, 033 тС · м/c

или 18033 кг С ·м/с

1 кг C·м = 9,81 Ватт, тогда при пересчете получим:

18033 кг С·м/с ·9,81 =176903,73 Вт или 176,9 КВт

Прибавив к полученной мощности не менее 30% возвращенной энергии за счет реактивной силы, развиваемой при заполнении поплавка воздухом и вытеснения из него воды, получим:

176,9 КВт + 18 КВт = 194 КВт

Мы получили энергии в 3,4 раза больше затраченной.

Механический КПД пневмогидродвигателя будет довольно высоким, т.к. работа происходит в условиях постоянной смазки водой, а поплавки взаимоуравновешены. КПД компрессора учтен при рассмотрении мощности двигателя компрессора. Пневмогидродвигатель оборудуется тормозом и останавливается на ходу, при этом в поплавках остается воздух и при следующем запуске расхода энергии не требуется, т.к. при расторма-живании оставшийся в поплавках воздух приведет двигатель в работу.

Мы сделали расчет для серийно выпускаемого компрессора, способного подать воздух под столб воды высотой 90 м. Это является вариантом повышения эффективности ГЭС за счет размещения пневмогидродвигателей на понтонах в водохранилищах. Повышение эффективности ГЭС с использованием нижнего бьефа показано в описании изобретения № 2059110. Конструкция пневмогидродвигателей отличается низкой металлоемкостью, т.к. состоит из легких каркасов. Любая речка, пруд, ручей, термальный источник, градирня могут стать источником энергии. На ГЭС за счет перемешивания нижних более теплых слоев воды с холодными верхними, сопровождаемого одновременным отбором теплоты, произойдет выравнивание температуры воды. Особенно важно то, что энергию не надо будет экономить, т.к. используя для ее получения природную неравновесность, мы не усиливаем энергетического неравновесия Земли, а, наоборот, возвращаем его, снимая последствия теплового загрязнения. Что касается солнечной энергии, то мы не расходуем ее больше, чем получаем.

Мы рассмотрели промышленный вариант получения энергии, но есть огромная потребность в энергоустановках на 3–4 КВт. Зададимся ее размерами. Возьмем высоту установки с высотой водяного столба равным 2 м. Используя этот же компрессор (только для расчета), определим мощность двигателя компрессора на подвод воздуха под столб воды 2 м:

N = (2 м·56,5 КВт) / (90 м + 10 м) = 1,13 КВт

Производительность компрессора - 0,167 м3/с

2 м водяного столба создают давление 0,2 Атм, тогда объем воздуха на глубине 2 м с учетом атмосферного давления будет равен

0,167 (м3/с) / 1,2 Атм = 0,139 м3/с

Время всплытия с глубины 2 м равно

2 м / 0,4 (м/с) = 5 сек

Через 5 сек в поплавках пневмогидродвигателя в состоянии движения с учетом увеличения объема при всплытии и коэффициента теплового расширения будет находиться

0,139 (м3/с) ·5 сек ·1,2 Атм ·1,2 = 1 м3

При всплытии будет произведено работы

1000 кгС ·0,4 м/с = 400 кгС·м/с

Работа в секунду означает мощность.

1 кгC м = 9,81 Ватт, тогда мощность равна

N = 9,81 Вт ·400 = 3924 Вт = 3, 924 КВт

Прибавив 30% возвращенной мощности, получим:

3, 924 КВт + 0,34 КВт = 4,263 КВт

При механическом КПД равном 0,9 получим мощность

N = 4,263 КВт · 0,9 = 3,84 КВт

Мы получили энергию в 3,4 раза больше затраченной:

3,84 КВт / 1,13 КВт = 3,4

Для того, чтобы еще раз убедиться в эффективности предлагаемого способа получения энергии, сравним его с эффективностью гидроаккумули-рующей электростанции, когда насосом или обратимой гидротурбиной закачивается вода в высокоуровневое водохранилище с использованием ее на нижнем уровне в турбине. В этом случае при КПД равном 100% могло быть получено количество энергии равное затраченному. Определим мощность двигателя насоса для подачи воды на высоту 90 м производительностью 0,167 м3/с:

N = (9,81 ·0,167м3/с ·90 м)/ 0,75 = 196,5 КВт

Сравним полученную мощность с мощностью двигателя компрессора равной 56,5 КВт с производительностью 0,167 м3/с воздуха, способного вытеснить на высоту 90 м такой же объем воды с подачей ее на турбину и получить 196,5 КВт, затратив при этом в 3,5 раза меньше энергии. Кроме того, на всей высоте столба воды остался находящийся в движении воздух, который тоже произведет работу, что подтверждено вышеприведенным расчетом. Возможности осуществления предложенного способа дополнительно рассмотрим на графике (Рис. 2)

Из графика следует, что действие силы плавучести воздуха сразу начинается с объема Vo. Заштрихованная часть - столб воды H, на преодоление давления которого расходуется энергия компрессора, Vo - объем воздуха на глубине H, Vk - объем воздуха, расширившийся в результате падения давления при всплытии, Vq - действующий объем воздуха. На графике видно, что для пневмогид-родвигателя количество находящегося в работе воздуха равно Vq, а для пневмо-гидравлической турбины важен объем воздуха, равный Vk, т.к. в ней работает вытесняемый объем воды, чем и объясняется разница в их эффективности.

Неисчерпаемость источника энергии, абсолютная экологическая чистота, активное улучшение окружающей среды, простота изготовления и быстрая окупаемость с возрастающей потребностью в энергии обеспечивают неисчерпаемость рынка сбыта, а разнообразие конструкций - широкую возможность их применения.

Использование: для получения энергии. Сущность изобретения: энергоустановка содержит вертикальный ветродвигатель с лопастями, установленный на цилиндрическом поплавке, расположенном в резервуаре с жидкостью, и кинематически связанный с рабочей машиной, размещенной на основании. Ротор выполнен в виде связанных треугольных каркасов, вершины которых смещены в окружном направлении друг относительно друга. Лопасти попарно установлены на ребре каждого каркаса при помощи шарниров с упругой связью, а площадь каждой пары лопастей равна площади стороны каркаса. Поплавок снабжен элементом качения, размещенными на его вертикальных образующих, и противовесом. Внутренняя поверхность резервуара выполнена сферической, причем элементы качения контактируют с последней. 10 з. п. ф-лы, 8 ил.

Изобретение относится к энергетике и может быть использовано для обеспечения потребителей энергией, запасенной в воде и воздухе. Уже известна ветроэнергетическая установка, содержащая ветродвигатель и приводящий воздушный компрессор, сжатый воздух которого питает пневмодвигатель. В схеме использованы пневмоаккумулятор и электрогенератор (заявка Великобритании N 2112463, кл. F 03 D 9/02, 1983). Однако в этой установке применен поршневой пневмодвигатель и поэтому не импользуется отбор теплоты от жидкости, когда происходит всплытие расширяющегося объема газа внутри поплавка-колокола, что снижает КПД. Известна солнечная установка, использующая парниковый эффект и представляющая солнечный коллектор для нагрева воды в солнечном коллекторе, используемой для теплоснабжения. КПД такой установки близок к 100% . Но саккумулированная в воде теплота при существующих способах преобразования не используется для получения энергии. Наконец, известна установка, содержащая пневмогидродвигатель, соединенный с источником сжатого воздуха. Хотя в прототипе использован поплавковый пневмогидродвигатель, содержащий плавающий цилиндрический корпус с закрепленным в нем при помощи гибких связей колоколообразного поплавка, способного совершать вертикальные перемещения внутри корпуса на длину связей и при этом совершать работу, но ограниченность хода поплавка гибкими связями и отсутствие расчетной формулы действующего объема сжатого воздуха, первоначально подаваемого под поплавок не позволяет определять параметры установки и приводят к снижению КПД

В предложенной установке существенно то, что, кроме традиционного преобразования различных проявлений энергии, предусмотрено наиболее эффективное извлечение аккумулированной в воде и воздухе солнечной энергии. Энергоизвлекающие свойства обусловлены следующими фактами. Используются свойства химических элементов и из соединений (смесь газов, составляющих воздух и соединение водорода и кислорода, составляющих воду), определяющих как изначальную, так и приобретенную их неравномерность, необходимое условие для создания постоянно действующей машины. Закон Архимеда рассматривается как следствие закона сохранения энергии, когда выталкивающая сила при равных температурах жидкости и тела рассматривается как следствие действия разности затрат энергии на создание или фазовый переход из одного состояния в другое с изменением плотности тела при неизменной плотности жидкости и которая определяет степень плавучести - положительную, когда выталкивающая сила больше силы вытягивания, нулевую, когда сила выталкивания и сила втягивания равны и отрицательную, когда сила выталкивания меньше силы втягивания. Формула закона Архимеда предлагается в следующей редакции: "На тело, погруженное в жидкость, действует сила, определенная разностью затрат энергии на создание жидкости и тела или на переход в иное агрегатное состояние, сопровождающееся изменением плотностей (если жидкость не вода), а также количеством энергии, аккумулированной жидкостью и телом в пределах температур образования или перехода в иное агрегатное состояние (растопление, затвердевание, газообразование". Выталкивающая сила, действующая на подведенный под столб воды или иной жидкости начальный объем газа или воздуха, обладающего положительной плавучестью, больше силы, необходимой для преодоления давления жидкости над напорным патрубком источника сжатого газа на величину силы, обеспечивающей положительную плавучесть. Выталкивающая сила, действующая на обладающий положительной плавучестью объем газа, подведенный под столб воды при равных температурах воды и газа, увеличивается по мере всплытия и уменьшения давления над ним с увеличением объема газа на величину первоначального объема через каждые 10 м всплытия (1 ат). Выталкивающая сила увеличивается практически при неизменной плотности воды в пределах температур от 0 до 100 о С, тогда как газ увеличивает свой объем на 1/273 первоначального объема на каждый градус повышения температуры, т. е. меняет плотность в зависимости от количества затраченной энергии интенсивнее воды, нарушая равновесие энергопотенциалов воды и воздуха и наблюдается, когда есть разность температур жидкости и газа. Выталкивающая сила увеличивается, т. к. подвод воздуха практически происходит в изолированной системе воды с низкой ее теплопроводностью (адиабатный процесс), когда при падении давления на 1 ат происходит понижение температуры воздуха примерно на 24 о С, т. е. воздух практически всегда подается под воду с температурой ниже температуры воды, что позволяет эффективно извлекать энергию при равных температурах воды и воздуха и близких к 0 о С. Полезную работу совершает средний действующий объем воздуха, который при взаимодействии с водой определяется из соотношения

V g = V n (1+0,5P)1+ . При этом коэффициент (1 + 0,5 Р) отражает изначальную неравновесность, а (1+ ) - приобретенную, где V д - действующий объем газа, V п - объем сжатого газа при абсолютном давлении, Р - коэффициент давления, зависящий от высоты столба воды, t - температура воды, t 1 - температура воздуха. Все вышеизложенное подтверждается следующими выводами и опытами. Обратим внимание на расположение химических элементов в периодической системе. Нельзя не заметить, что все они расположены по мере увеличения их атомных весов, т. е. по неравновесности. Невозможно отрицать, что на их создание природой затрачено разное количество энергии и эта разность определила и свойства элементов, таких как плотность, теплоемкость и теплопроводность. В этом ряду есть водород, железо и ртуть. В ртути всплывут и водород и железо, но количество произведенной при этом работы будет больше у водорода, чем у железа. Но и стоят они в системе не рядом и обладают разной плотностью, теплоемкостью и теплопроводностью. Это пример того, когда работа совершается за счет изначальной неравновесности. Но вот когда подведенный под столб воды объем воздуха увеличивается не только за счет увеличения давления над ним при всплытии, а еще и за счет положительной разности температур между водой и воздухом, то в этом случае работа производится за счет как изначальной неравновесности, так и приобретенной. Известно, что на расположение 1 г льда, взятого при 0 о С, необходимо затратить 80 кал. На растопление 1 т льда, взятого при 0 о С, требуется 93 кВтч, при этом вода будет иметь температуру близкую к 0 о С (точка фазового перехода из твердого состояния в жидкое и наоборот). А это значит, что в 1 т воды при температуре, близкой к 0 о С, аккумулировано не менее 93 кВт/ч энергии. Что такое вода? Это одно из состояний воды как вещества (жидкое), но вода еще и расплав льда, и лед в ней плавает. Но в своем расплаве плавают и свинец и железо, твердое состояние вещества плавает в своем расплаве. В обоих случаях на приготовление расплава была затрачена энергия, создавая разницу в энергиях жидкого и твердого состояния вещества. Если на приготовление расплава свинца мы расходуем искусственно полученную энергию, то расплав льда (воду) и сам лед нам приготовила природа, которая поддерживает необходимый энергетический режим, при котором вода находится в жидком состоянии, а количество энергии саккумулированное в 1 м 3 воды при температуре близкой к 0 о С сравнима с количеством энергии выделяемом при сжигании 1 м 3 дров. К горлышку бутылки привяжем груз так, чтобы бутылка в воде плавала и занимала вертикальное положение. Выпустим часть воздуха заменив его водой и добьемся такого положения, когда бутылка только начнет тонуть и заткнем под водой бутылку пробкой, превратив ее в герметичный поплавок. Сменив воду на горячую, опустим бутылку в воду. Температура холодной воды 20 о С, горячей - +45 о С. Бутылка так же, как и в первом случае, когда вода холодная, затонет. При этом объем воздуха, масса, плотность остались неизменны, но изменилась внутренняя энергия воздуха. Вынем под водой пробку, превратив бутылку в поплавок-колокол, бутылка всплывет и выступит над водой около 10 мм. Перед опусканием бутылки в воду резиновым кольцом отметим уровень воды в бутылке. Под горячей водой заткнем пробку и вынем бутылку из воды. Расширившийся объем воздуха вытеснил воду из бутылки. Зная первоначальный объем воздуха в бутылке, полученный объем и температуру холодной и горячей воды, при расчете получим, что увеличение первичного объема воздуха счоставило 1/273 на каждый градус повышения темпепратуры воздуха, а это формула закона Гей-Люссака, которая выглядит следующим образом:

V = V1+ t, где t - разность температур воды и воздуха;

V о - первичный объем воздуха. Когда мы отрегулировали бутылку на начало момента погружения, создав условия занятия бутылкой безразличного положения, мы таким образом уровняли две силы - силу притяжения и силу вытакивания, т. е. приблизили эти условия к условиям невесомости. Отрегулированную таким образом бутылку или емкость с открытой нижней частью опустим утром в холодную воду естественного водоема (вода за ночь успела остыть, а перепады температур, например, в степях Казахстана достигают 25-30 о С, который мы можем увеличить за счет подключения солнечного коллектора, нагревающего воду в дневное время и охлаждающего в ночное). Бутылка или емкость затонет. По мере прогрева водоема солнцем, а мощность солнечного излучения в среднем равна 1 кВт/м 2 , воздух в бутылке или емкости одновременно с водой водоема начнет прогреваться и из-за разности теплоемкостей воды и воздуха и связанной с ней коэффициента объемного расширения начнет увеличиваться в объеме больше чем вода, вытесняя ее из бутылки. Бутылка или емкость всплывет и в зависимости от размеров бутылки или емкости, перепад температур произведет работу. Вечером вода начнет остывать, и к утру бутылка или емкость не просто затонет, а будет втянута в воду. При этом, если перепад температур будет равным, то будет произведено и равное количество энергии, что и при выталкивании. С началом прогрева водоема солнцем начнется всплытие, и цикл повторится. Мы получим довольно эффективную постоянно действующую солнечную установку типа работающий вечный двигатель второго рода, в которой разность энергий двух изначально неравновесных сред способствует извлечению солнечной энергии, создавшей приобретенную неравновесность взаимодействующих веществ и сред. Когда мы отрегулировали бутылку в холодной воде на начало момента погружения, заменив часть воздуха водой, мы таким образом убрали часть выталкивающей силы, обеспечивающей всплытие (положительная плавучесть), и одновременно уравняли количество вещества вытесненной бутылкой воды и самой бутылкой с прицепленным к ней грузом и ее содержимым (вода, воздух), т. е. вес бутылки с водой, грузом и воздухом в ней равен весу вытесненной воды, т. е. выталкивающая сила равна нулю (нулевая плавучесть), разность энергопотенциалов наружной воды и системы - груз, стекло бутылки, воздух и вода в бутылке тоже равна нулю. Но чтобы добиться такого положения, мы убрали не часть силы притяжения, а часть выталкивающей силы, а это значит, что если бы сила притяжения в этом случае и существовала, то для тела с положительной плавучестью она была бы все равно меньше выталкивающей силы, т. е. ее в данном случае нет, и она не может возникнуть, пока отрегулированная на нулевую плавучесть бутылка будет находится в воде, а разность энергопотенциалов будет равна нулю, т. к. выталкивающая сила, действующая на неизменяемый объем тела, не зависит от глубины погружения, тем более, когда вместо твердого тела применяется газ с его положительной плавучестью, способностью увеличиваться в объеме по мере всплытия и изменения температуры. На тело находящееся в условиях нулевой плавучести действуют две противоположно направленные и равные силы - сила выталкивания направленная вверх и сила втягивания направленная вниз. Сила выталкивания увеличивается при увеличении положительной разности энергопотенциалов воды и воздуха при полном отсутствии силы притяжения, а сила втягивания - при ее отрицательной разности. Проследим сделанные выводы на формулах. На поверхности Земли сила притяжения равна F = mq, где m - масса тела, q - ускорение свободного падения равное 9,81 м/с 2 . На поверхности Земли выталкаивающая сила равна F = V Dq, где V - объем тела, D - плотность жидкости (в данном случае воды), q - ускорение свободного падения равное 9,81 м/c 2 . Но VD равно m. Таким образом, на любой объем жидкости в столбе этой жидкости на любой глубине действует выталкивающая сила, равная силе притяжения, а это то же самое безразличное положение тела в жидкости, как в случае с бутылкой, и это тот случай, если бы мы закачивали под столб воды воду и при возврате вытесненной воды через турбину, имеющую КПД = 1, получили количество энергии, равное затраченному, но мы закачиваем под воду не воду, а обладающий положительной плавучестью воздух. Рассмотрим более подробно следствие, вытекающее из закона Архимеда. Плавающее тело погружено некоторой своей частью в жидкость: погруженная часть вытесняет по весу столько жидкости, сколько весит все тело. Мы можем сказать, что на плавающее тело действует выталкивающая сила, равная весу жидкости, вытесненной погруженной частью, и ошибемся. Ведь находящийся над поверхностью воды воздух, так же обладающий положительной плавучестью, можно принять за плавающее тело. Однако при постоянном количестве растворенного в воде воздуха (втянутого) никакого погружения воздуха в воду нет, но он и выталкивается из нее без остатка, т. е. с большей силой, хотя столб воздуха над этим телом может превышать вес тела. Но вот если погружать на какую-то глубину плавающее тело и столб воздуха над этим телом, то на погружение столба воздуха закрыты энергии значительно больше, чем на погружение тела. В обоих случах пришлось бы преодолевать силу плавучести (положительную), т. е. когда выталкивающая сила больше нуля. А мы убедились, что выталкивающая сила на этапе всплытия при равных температурах воды и воздуха больше силы притяжения. Неравновесность - необходимое условие для создания периодически действующей машины, что не противоречит второму закону термодинамики так и закону сохранения энергии. Но если твердое тело невозможно подвести под столб жидкости, не преодолев силу (погружение тела мы вынуждены вести с поверхности водоема), то воздух можно подвести, минуя затраты энергии на преодоление плавучести. Это еще одно доказательство, почему на подвод объема воздуха под столб воды энергии требуется меньше, чем на преодоление давления воды над напорным патрубком источника сжатого воздуха, что хорошо видно на фиг. 8. Так как и первичный подведенный объем воздуха обладает положительной плавучестью, то понятно, что при всплытии получим выигрыш в энергии за счет отобранной у воды теплоты и разности затрат энергии на создание жидкости и тела. Возьмем воронку, перевернем ее соском вверх и опустим в воду так, чтобы нижняя расширенная часть не доходила до дна, а верхняя была на уровне воды или чуть выше. Трубкой подведем под воронку воздух. Убедимся в том, что вытесненная из воронки вода не просто переливается из соска, а фонтанирует на значительную высоту, т. е. почти не увеличивающийся объем воздуха за счет силы плавучести создает выталкивающую силу, которая не наблюдается при подводе такого же объема воды, когда при КПД = 1 мы могли бы получить количество энергии равное затраченному. Но на подвод воздуха мы тратим энергии меньше, чем на подвод воды, тем не менее получаем выигрыш в энергии. Это не принцип на котором основано действие инжектора или эжектора, а явление обусловленное разностью затрат энергии на создание воды и воздуха (изначальная неравновесность), которая определяет их свойства. Известно, что объем воздуха при падении давления на 1а увеличивается на величину первоначального объема, т. е. первоначальное увеличение объема воздуха происходит или, вернее, равно увеличению в 2 раза, но работает на производство энергии средний действующий объем воздуха (фиг. 8), который выражается уравнением

V g = V o + = P, где V о - объем воздуха первичного заполнения на глубине Н при одинаковых температурах воды и воздуха;

Н - высота столба воды,

Р - коэффициент давления, зависящий от высоты столба воды (Нм/10 м = Р) на уровне нижнего поплавка-колокола или кольцевого распределителя сжатого воздуха. Тогда

Устранить влияние поля на поднимающийся груз затруднительно, так как гравитационного поле «не выключается», во всяком случае, пока мы не изобрели «экран», о котором писал Тесла. В системах с гравитационным полем, обычно, меняют параметры самого рабочего тела на разных участках цикла движения, например, сдвигая его вдоль радиуса вращения ближе или дальше от оси. В некоторых схемах, к воздействию гравитационного поля, на участке траектории рабочего тела, добавляют или вычитают воздействие другого источника поля, тоже гравитационного, электрического или магнитного. Похожим способом является сложение – вычитание гравитационной силы и архимедовой силы.

Итак, гравитационное поле не экранируется, но его можно частично или полностью компенсировать другим силовым полем, например, магнитным или электрическим, на нужном участке траектории движения рабочего тела. На рис. 15 показана такая конструкция, предложенная Профессором Дудышевым Валерием Дмитриевичем, Самара.

Рис. 15. Частичная компенсация гравитационного поля магнитным полем

Известный современный автор-разработчик подобных конструкций, Михаил Федорович Дмитриев, создал магнито-гравитационный двигатель, рис. 16. Это машина с внешним управлением отклонениями элементов постоянными магнитами (или электромагнитами) в левой части цикла вращения, внутренним инерционным или активным (внутренним или внешним) отклонением элементов в правой части цикла и суммированием этих отклонений на устройствах однонаправленного вращения. Патент РФ на полезную модель № 81775.

Рис. 16. Магнито-гравитационный двигатель Дмитриева

На рис. 17 показано фото установки, прислано им для публикации в данной книге в декабре 2010 г. Сайт Михаила Федоровича Дмитриева можно найти здесь gravitationalengme. com

Рис. 17. Фото экспериментальной установки Дмитриева.

Важное замечание по конструированию «самовращающихся колес»: мы имеем дело с вращением, поэтому это не только гравитационные, но гравитационо-центробежные машины, как их называет Профессор Эверт, Германия (Alfred Evert). При их конструировании и компьютерном моделировании, надо задавать скорость вращения, и учитывать влияние центробежной силы на положение рабочих элементов. На сайте Профессора Эверт www.evert.de можно найти полезную информацию по данной теме.

Отметим другие, менее известные методы, которые также имеют свое теоретическое обоснование и пути технической реализации предложенных методов.

Название «гравитационные диоды», по аналогии с электротехническими диодами, говорит само за себя. Это детали конструкций машин и механизмов, сделанные из вещества, имеющего анизотропные гравитационные свойства. Предметы из данного вещества в разной степени взаимодействуют с гравитационным полем, с разных направлений в пространстве. При взвешивании такого «гравитационного диода» с разных сторон, мы получим различные величины силы веса, рис. 18.

Рис. 18. Гравитационный диод на весах

Технология изготовления таких веществ пока не обсуждается, но их применение легко можно себе представить в качестве рабочих элементов роторов машин и электрогенераторов, способных постоянно вращаться в «потоке энергии» гравитационного поля, рис. 19.

Рис. 19. Машина Фролова с «гравитационными диодами»

Согласитесь, идея очень напоминает обычное колесо водяной мельницы, вращаемое потоком падающей воды: в левой части ротора «гравитационные диоды» легче, а справа они тяжелее.

В сравнении с потоком падающей воды, мы не очень далеки от истины. Со времен Фатио (Fatio) и Ле Саж (Le Sage), примерно 1748 год, в кинетической теории эфира, гравитация и вес тел рассматриваются, как силовое воздействие потока эфирных частиц, втекающих из окружающего пространства в центр масс планеты. При использовании «гравитационных диодов» или других инженерных решений, можно заставить работать этот поток частиц, имеющих определенную кинетическую энергию.

Существуют разные конструктивные хитрости, которые позволяют создавать асимметрию взаимодействия в разных участках траектории движения грузов. На рис. 20 показана схема из патента Украины № 62956 на «Самоподвижный механизм». В нижней части ротора, благодаря элементу конструкции 20, рабочее тело должно переходить на орбиту малого радиуса.

Рис. 20. Патент Украины № 62956

Авторы похожих изобретений полагают, что суммарная работа, производимая всеми элементами, находящимися «на большом плече» рычага, может быть больше, чем необходимая работа по переводу одного элемента из положения на большом радиусе в положение на малом радиусе. Элементы переводятся в нужное положение поочередно. Другими словами, действует принцип: «Один за всех, все за одного!» Фиксация элементов на роторе в крайних положениях может обеспечиваться разными способами, а современные методы, например, электромагнитные защелки с внешним управлением от электронной схемы, позволяют ее реализовать в простом и надежном исполнении.

Понравилось? Лайкни нас на Facebook